Х Межрегиональная студенческая физико-математическая Олимпиада, посвященная 115-летию со дня рождения Георгия Николаевича Шуппе (II тур Всероссийской студенческой олимпиады)

Рязанский государственный радиотехнический университет им. В.Ф. Уткина 13 марта 2021 года

Решение.

Вычтем из первой строки вторую, из второй – третью, и т.д., из предпоследней – последнюю.

Получим:
$$\begin{vmatrix} n-1 & -n+1 & 0 & \dots & 0 & 0 \\ 0 & n-2 & -n+2 & \dots & 0 & 0 \\ 0 & 0 & n-3 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -1 \\ 1 & 2 & 3 & \dots & n-1 & n \end{vmatrix}$$
 . Вынесем множители из всех строк, кроме
$$\begin{vmatrix} 1 & -1 & 0 & \dots & 0 & 0 \\ 0 & 1 & -1 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -1 \\ 1 & 2 & 3 & \dots & n-1 & n \end{vmatrix}$$
 . Раскрываем определитель по последнему
$$\begin{vmatrix} 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 1 & -1 \\ 1 & 2 & 3 & \dots & n-1 & n \end{vmatrix}$$

$$(n-1)!$$
 $n+egin{bmatrix} 1 & -1 & 0 & \dots & 0 & 0 \ 0 & 1 & -1 & \dots & 0 & 0 \ 0 & 0 & 1 & \dots & 0 & 0 \ & \ddots & \ddots & \ddots & \ddots & \ddots \ 0 & 0 & 0 & \dots & 1 & -1 \ 1 & 2 & 3 & \dots & n-2 & n-1 \ \end{pmatrix}$. Повторяем разложение по последнему столбцу и

получаем:
$$(n-1)!(n+(n-1)+(n-2)+...+2+1)=(n-1)!\frac{n(n+1)}{2}=\frac{(n+1)!}{2}$$
.

Задача 2. Два приведенных квадратных трехчлена f(x) и g(x) таковы, что каждый из них имеет по два различных действительных корня, и выполняются равенства f(1) = g(2) и f(2) = g(1). Найти сумму всех четырех корней этих трехчленов.

Решение.

<u>1 способ.</u> Пусть $f(x) = x^2 + ax + b$ и $g(x) = x^2 + cx + d$, тогда условия задачи будут записаны в виде 1 + a + b = 4 + 2c + d и 4 + 2a + b = 1 + c + d. Вычитая из первого равенства второе, получим -3 - a = 3 + c или a + c = -6. Но по теореме Виета сумма корней первого уравнения равна -a, сумма корней второго уравнения равна -c. Тогда сумма всех четырех корней равна -a - c = 6.

 $\frac{2\ \mathrm{cnoco6.}}{2}$ Рассмотрим вспомогательный трехчлен h(x) = g(3-x) (также являющийся приведенным). Тогда многочлен h(x) - f(x) имеет степень не выше 1, при этом имеет 2 корня (x=1 и x=2), то есть $h(x) - f(x) \equiv 0$, откуда f(x) = g(3-x). Тогда если x_0 является корнем f(x), то $3-x_0$ является корнем g(x), а их сумма равна 3. Аналогично для второй пары корней, а сумма всех четырех корней равна 6.

Задача 3. Найти предел
$$\lim_{n\to\infty} \left(n^2 \ln \frac{\arctan(6n) - \arctan(3n)}{\arctan(3n) - \arctan(2n)} \right).$$

Решение.

При $x \to 0$ по формуле Тейлора $\arctan x = x - \frac{x^3}{3} + o\left(x^3\right)$. Поскольку при z > 0 выполняется $\arctan z = \frac{\pi}{2} - \arctan \frac{1}{z}$, получаем $\arctan z = \frac{\pi}{2} - \arctan \left(\frac{1}{kn}\right) = \frac{\pi}{2} - \frac{1}{kn} + \frac{1}{3k^3n^3} + o\left(n^{-3}\right)$. Следовательно, $\arctan z = \frac{\pi}{2} - \frac{1}{2n^3} + \frac{1}{3\cdot 3^3n^3} + o\left(n^{-3}\right) = \frac{\pi}{2} - \frac{1}{3n^3} + \frac{1}{3\cdot 3^3n^3} + o\left(n^{-3}\right) = \frac{\pi}{2} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{1}{6n} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{7}{216} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{1}{3n^3} \cdot \frac{\pi}{3} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} - \frac{\pi}{3} + o\left(n^{-3}\right)$, $\arctan z = \frac{\pi}{3} + o\left(n^{3}\right)$, $\arctan z = \frac{\pi}{3} + o\left(n^{-3}\right)$, $\arctan z =$

$$\arctan(3n) - \arctan(2n) = \left(\frac{\pi}{2} - \frac{1}{3n} + \frac{1}{3 \cdot 3^3 n^3}\right) - \left(\frac{\pi}{2} - \frac{1}{2n} + \frac{1}{3 \cdot 2^3 n^3}\right) + o(n^{-3}) = \frac{1}{6n} - \frac{1}{3n^3} \cdot \frac{19}{216} + o(n^{-3}).$$

После умножения числителя и знаменателя на 6*n* получим:

$$\lim_{n \to \infty} \left(n^2 \ln \frac{\arctan(6n) - \arctan(3n)}{\arctan(3n) - \arctan(2n)} \right) = \lim_{n \to \infty} \left(n^2 \ln \frac{1 - \frac{2}{n^2} \cdot \frac{7}{216} + o(n^{-2})}{1 - \frac{2}{n^2} \cdot \frac{19}{216} + o(n^{-2})} \right) = \lim_{n \to \infty} n^2 \left[\left(1 - \frac{2}{n^2} \cdot \frac{7}{216} + o(n^{-2}) \right) - \left(1 - \frac{2}{n^2} \cdot \frac{19}{216} + o(n^{-2}) \right) \right] = 2 \left(-\frac{7}{216} + \frac{19}{216} \right) = \frac{1}{9}.$$

Задача 4. Записать в виде F(x, y) = 0 уравнение:

- а) границы квадрата с вершинами в точках A(-1,-1), B(-1,1), C(1,1), D(1,-1).
- б) части координатной плоскости, ограниченной этим квадратом.

Решение.

а) Сначала зададим отрезок AB. При этом x=-1, а $-1 \le y \le 1$. Отметим, что функция 2-|y-1|-|y+1| равна 0 только при $-1 \le y \le 1$, тогда уравнение отрезка может быть записано в виде $\left(2-|y+1|-|y-1|\right)^2+\left(x+1\right)^2=0$. Аналогично строим уравнения отрезков BC, CD и DA. Тогда граница может быть записана в виде уравнения

$$F(x,y) = ((2-|x+1|-|x-1|)^2 + (y-1)^2)((2-|x+1|-|x-1|)^2 + (y+1)^2) \times ((2-|y+1|-|y-1|)^2 + (x-1)^2)((2-|y+1|-|y-1|)^2 + (x+1)^2) = 0.$$

<u>Примечание.</u> Данный вариант уравнения – не единственный, граница может быть задана, например, как F(x,y) = |y-x| + |y+x| - 2 = 0.

б) Часть плоскости, ограниченная этим квадратом, может быть задана уравнением $F\left(x,y\right) = \sqrt{2-\left|x+1\right|-\left|x-1\right|} \cdot \sqrt{2-\left|y+1\right|-\left|y-1\right|} = 0\,,$ причем область определения функции $F\left(x,y\right)\,(\left|x\right| \leq 1\,\text{ и }\left|y\right| \leq 1)\,$ совпадает с искомым квадратом.

3адача 5. Используя известные разложения логарифмических функций в ряд Тейлора, найдите 1n 6 с точностью до $\varepsilon = 0.01$.

Решение.

Непосредственно пользоваться разложением в ряд Маклорена

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots,$$
 (1)

разумеется, нельзя. Тогда записывая

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \dots$$
 (2)

и вычитая (2) из (1), получим

$$\ln\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \frac{x^9}{9}\dots\right). \tag{3}$$

При области сходимости $x \in (0,1)$, получаем, что $\frac{1+x}{1-x} \in (0,+\infty)$, т.е. по (3) можно вычислить натуральный логарифм для любого неотрицательного числа.

Далее
$$\frac{1+x}{1-x} = 3$$
, откуда $x = \frac{1}{2}$. Подставляя в (3), получим

$$\ln 3 = 2\left(\frac{1}{2} + \frac{1}{24} + \frac{1}{160} + \frac{1}{896} + \dots\right) = 1 + \frac{1}{12} + \frac{1}{80} + \frac{1}{448} + \dots = ,$$
$$= 1 + 0.083 + 0.013 + 0.002 + \dots \approx 1.098.$$

При
$$\frac{1+x}{1-x} = 2$$
, $x = \frac{1}{3}$, аналогично

$$\ln 2 = 2\left(\frac{1}{3} + \frac{1}{81} + \frac{1}{1215} + \dots\right) \approx 0.693$$

Тогда $\ln 6 = \ln 3 + \ln 2 \approx 1.791$

Задача 6. Разложить в ряд Маклорена функцию $f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0; \\ 0, & x = 0. \end{cases}$

Решение.

Так как $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0) = 0$, то f(x) непрерывна в окрестности точки $x_0 = 0$. Далее, по определению

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x} = 0,$$

далее получаем, что и $f^{(n)}(0) = 0$ для всех $n \in \square$. То есть получаем абсурдный результат: $f(x) \equiv 0$ для любого $x \in \square$!

Данная функция не может быть представлена в ряд Маклорена. Действительные функции одного или нескольких переменных могут быть не аналитическими, даже если они бесконечно дифференцируемы, т.е. их ряды Тейлора могут сходиться, но не к данной функции.

Задача 7. Найти решение уравнения $2y'' + (y')^2 = y^2$, y(0) = y'(0) = 1. **Решение**.

Пусть
$$y' = p(y)$$
, тогда $y'' = \frac{dp}{dx} = \frac{dp}{dy} \frac{dy}{dx} = pp'$. Уравнение примет вид $2pp' + p^2 = y^2$.

Уравнение является уравнением Бернулли. Решение однородного уравнения $2\,p$ '+ p=0 имеет вид $v=e^{-y/2}$. Ищем решение уравнения Бернулли в виде p=uv .

$$2pp'+p^2=2\big(u'v+v'u\big)uv+u^2v^2=2u'uv^2=\big(u^2\big)'e^{-y}=y^2\,.$$

$$u^2=\int y^2e^ydy=e^y\big(y^2-2y+2\big)+C_1.$$
 Получаем $p=uv=\sqrt{y^2-2y+2}+C_1e^{-y}$. При $y=0$ получаем $p=1$, откуда $C_1=0$. Тогда $\frac{dy}{dx}=\sqrt{y^2-2y+2}$, $\frac{dy}{\sqrt{y^2-2y+2}}=dx$, $\operatorname{Arsh}\big(y-1\big)=x+C_2$. Из условия $y(0)=1$ получаем $y=\operatorname{sh} x+1$.

Задача 8. Найти объем тела $G = \{|x| + |y| + |z| + \max(|x|,|y|,|z|) \le 1\}$.

Решение.

Поскольку G симметрично относительно всех координатных плоскостей, его объем в 8 раз больше объема тела $H=G\cap \left\{x,y,z\geq 0\right\}$. Далее, H симметрично относительно плоскости x=y и поворотов на 120° вокруг прямой x=y=z, т.е. объем H в 6 раз больше объема тела $T=H\cap \left\{x\geq y\geq z\right\}=G\cap \left\{x\geq y\geq z\geq 0\right\}=\left\{2x+y+z\leq 1,x\geq y\geq z\geq 0\right\}$. Тело T — тетраэдр с вершинами в точках $O\left(0,0,0\right),\ A\left(\frac{1}{2},0,0\right),\ B\left(\frac{1}{3},\frac{1}{3},0\right),\ C\left(\frac{1}{4},\frac{1}{4},\frac{1}{4}\right)$.

$$V(T) = \frac{1}{6} |\mathbf{OA} \cdot \mathbf{OB} \cdot \mathbf{OC}| = \frac{1}{6} \cdot \begin{vmatrix} 1/2 & 1/3 & 1/4 \\ 0 & 1/3 & 1/4 \\ 0 & 0 & 1/4 \end{vmatrix} = \frac{1}{6} \cdot \frac{1}{24}.$$

Тогда
$$V(G) = 8 \cdot 6 \cdot V(T) = \frac{1}{3}$$
.

3адача 9. Дождливым осенним вечером на заседание Лондонского Клуба Джентльменов пришло n человек. Разумеется, каждый джентльмен взял с собой зонтик и отдал его на входе

швейцару. Через несколько часов, после многих выпитых чашек чая и обсуждения всех вопросов, джентльмены стали расходиться по домам, и каждый джентльмен брал у швейцара зонтик случайным образом. Какова вероятность того, что никто из джентльменов не взял тот зонтик, с которым он пришел? Рассмотреть случаи n = 4, n = 50, $n \to \infty$.

Решение.

Пусть P(A) - искомая вероятность.

По известной формуле «включения – исключения» найдем вероятность того, что хотя бы один человек ушел со своим зонтиком:

$$\begin{split} P\Big(\overline{A}\Big) &= P\Big(A_1 + A_2 + \ldots + A_n\Big) = P\Big(A_1\Big) + P\Big(A_2\Big) + \ldots + P\Big(A_n\Big) - P\Big(A_1A_2\Big) - \ldots - P\Big(A_{n-1}A_n\Big) + \\ &+ P\Big(A_1A_2A_3\Big) + \ldots + P\Big(A_{n-2}A_{n-1}A_n\Big) - \ldots + \Big(-1\Big)^{n+1} P\Big(A_1A_2 \ldots A_n\Big). \end{split}$$

Тогда

$$P(A) = 1 - P(\overline{A}) = 1 - \left[\frac{C_n^1(n-1)!}{n!} - \frac{C_n^2(n-2)!}{n!} + \frac{C_n^3(n-3)!}{n!} - \dots + \frac{(-1)^{n+1}C_n^n}{n!} \right]$$

Таким образом,

$$P(A) = 1 - \left[1 - \frac{1}{2!} + \frac{1}{3!} - \dots + \frac{(-1)^{n+1}}{n!}\right].$$

При небольших значениях n можно вычислять непосредственно, при n=4

$$P(A) = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} = \frac{9}{24}$$

При больших n, очевидно, что

$$P(A) = 1 - \left[1 - \frac{1}{2!} + \frac{1}{3!} - \dots + \frac{(-1)^{n+1}}{n!} + \dots\right] = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n!} = \frac{1}{e}.$$

Замечание.

К правильному ответу можно было прийти путем неправильных рассуждений. Пусть разбор зонтиков – независимые (что вообще говоря неверно) события. Тогда легко можно получить формулу

$$P(A) = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}.$$

Такие выводы, очевидно, применимы лишь к большому числу n.

 $\hat{A}\psi = rac{d\psi}{dx} + x\psi$, т.е. $\hat{A} = rac{d}{dx} + x$. Найти вид оператора \hat{A}^2 .

Решение.

Применяя двукратно оператор к произвольной функции $\psi(x)$, получим

$$\hat{A}^2\psi = \hat{A}(\hat{A}\psi) = \left(\frac{d}{dx} + x\right)\left(\frac{d\psi}{dx} + x\psi\right) = \frac{d^2\psi}{dx^2} + 2x\frac{d\psi}{dx} + x^2\psi + \psi,$$

и, следовательно,

$$\hat{A}^2 = \frac{d^2}{dx^2} + 2x\frac{d}{dx} + x^2 + 1.$$

3адача 11. Основной причиной понижения температуры с высотой в атмосфере является адиабатическое расширение восходящих потоков воздуха. Используя уравнение адиабаты $pV^{\gamma}=const$, где $\gamma=1,4$, найти изменение температуры с высотой. Универсальная газовая постоянная R=8,31Дж \cdot град $^{-1}$ · моль $^{-1}$, молекулярный вес воздуха M=29г · моль $^{-1}$.

Решение.

Изменение давления с высотой:

$$dp = -\rho g dh = -\frac{gM}{R} \cdot \frac{p}{T} dh \tag{1}$$

где $\rho = \frac{pM}{RT}$ - плотность воздуха. Так как процесс адиабатический, то $p^{1-\gamma}T^{\gamma} = const$, то дифференцируя и разделяя переменные, получим:

$$\frac{dp}{p} = \left(\frac{\gamma}{\gamma - 1}\right) \frac{dT}{T} \tag{2}$$

Из (1) и (2) следует, что

$$\frac{dT}{dh} = -\left(\frac{\gamma - 1}{\gamma}\right) \frac{gM}{R} \approx -10 \frac{\epsilon pa\partial}{\kappa M}.$$